EduPanda Logo
  • Kursy online
    • Elektrotechnika / Teoria obwodów
    • Mechanika techniczna
    • Mechanika budowli / konstrukcji
    • Mechanika płynów
    • Metody numeryczne / obliczeniowe
    • Robot Structural Analysis
    • Wytrzymałość materiałów
    • Słownik pojęć
  • Kalkulatory
  • Korepetycje i projekty
    • Elektrotechnika / Teoria obwodów
    • Mechanika techniczna
    • Mechanika budowli / konstrukcji
    • Mechanika płynów
    • Metody numeryczne / obliczeniowe
    • Wytrzymałość materiałów
  • Wzory, wykresy i tablice
  • Cennik
    /
    /
    /
footer-logo
media-instmedia-youtubemedia-fb

© 2024 EduPanda. Wszystkie prawa zastrzeżone.

Kursy

  • Elektrotechnika / Teoria obwodów
  • Mechanika techniczna
  • Mechanika budowli / konstrukcji
  • Mechanika płynów
  • Metody numeryczne / obliczeniowe
  • Robot Structural Analysis
  • Wytrzymałość materiałów
  • Słownik pojęć

Korepetycje

  • Elektrotechnika / Teoria obwodów
  • Mechanika techniczna
  • Mechanika budowli / konstrukcji
  • Mechanika płynów
  • Metody numeryczne / obliczeniowe
  • Wytrzymałość materiałów
Kalkulatory
Wzory, wykresy i tablice
Sklep
Mapa strony
media-instmedia-youtubemedia-fb

© 2024 EduPanda. Wszystkie prawa zastrzeżone.

Dynamika

2 Ssd Drgania Wymuszone

  1. Edupanda
  2. /
  3. Mechanika budowli
  4. /
  5. Dynamika
  6. /
  7. 2 Ssd Drgania Wymuszone

Przykład 1

free
Przykład 1

Dla podanej belki wyznaczyć częstości drgań własnych i narysować ich postacie. Sprawdzić warunek ortogonalności. Narysować momenty ostateczne pochodzące od sił bezwładności (częstość wymuszenia przyjąć jako średnią arytmetyczną wyliczonych wcześniej częstości drgań własnych, czyli \( \theta=\frac{\omega_1+\omega_2}{2} \) ) \( \text{Dane:} \ EI= 2,1\cdot 10^5 \ kNm^2, \ m=200 \ kg, \ P=10\cdot sin(\theta \ t) \)

Zobacz przykład →

Przykład 2

Przykład 2

Dla podanej ramy wyznaczyć siły bezwładności. \( \text{Dane:} \ EI= 4000 \ kNm^2, \ m=700 \ kg, \ P=25 sin(pt), \ p=15\ \frac{rad}{s} \)

Zobacz przykład →

Przykład 3

Przykład 3

Dla podanej ramy narysować momenty ostateczne pochodzące od sił bezwładności. Narysować obwiednie momentów. Dane: \( \mathrm{E}=2.1 \cdot 10^{11} \frac{\mathrm{N}}{\mathrm{m}^2}, \mathrm{~m}=660 \mathrm{~kg}, \mathrm{~m}_{\mathrm{w}}=2250 \mathrm{~kg}, \mathrm{e}=4.3 \mathrm{~mm}, \mathrm{n}=470 \frac{\mathrm{obr}}{\mathrm{min}} \), przekrój belki IPN 200.

Zobacz przykład →

Przykład 4

Przykład 4

Dla podanej ramy narysować momenty ostateczne pochodzące od sił bezwładności. Narysować obwiednie momentów. Dane: \( \mathrm{E}=2.1 \cdot 10^{11} \frac{\mathrm{N}}{\mathrm{m}^2}, \mathrm{~m}=680 \mathrm{~kg}, \mathrm{~m}_{\mathrm{w}}=400 \mathrm{~kg}, \mathrm{e}=2 \mathrm{~mm}, \mathrm{n}=300 \frac{\mathrm{obr}}{\mathrm{min}} \), przekrój ramy o momencie bezwładności \(I=4250\ cm^4 \).

Zobacz przykład →

Przykład 5

Przykład 5

Dla podanej ramy narysować momenty ostateczne pochodzące od sił bezwładności. Dane: \( \theta =0,8\cdot \omega_1 \, F_0=2\ kN \)

Zobacz przykład →

Przykład 6

Przykład 6

Dla podanej ramy narysować momenty ostateczne pochodzace od sł bezwładności. Sprawdzić czy naprężenia w pręcie o przekroju prostokątnym 12 x 24 cm oraz module Younga 210 GPa nie przekroczą dopuszczalnej wytrzymałości kg=240 MPa. Dane: \( \mathrm{p}=8.25 \frac{\mathrm{rad}}{\mathrm{s}}, \mathrm{m}=2.75 \mathrm{t}, \mathrm{P}=20.5 \mathrm{kN} \)

Zobacz przykład →